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Abstract. A new algorithm for the derivation of low-density expansions has been used to greatly
extend the series for moments of the pair-connectedness on the directed square lattice near an
impenetrable wall. Analysis of the series yields very accurate estimates for the critical point and
exponents. In particular, the estimate for the exponent characterizing the average cluster length
near the wall,τ1 = 1.000 14(2), appears to exclude the conjectureτ1 = 1. The critical point and
the exponentsν‖ andν⊥ have the same values as for the bulk problem.

1. Introduction

Surface critical behaviour in equilibrium systems has received a lot of attention in recent
years [1, 2]. Close to a surface, thermodynamic quantities have critical exponents which
may depend on the specific boundary conditions and differ from the exponents characterizing
the behaviour in the bulk. While relatively little attention has been paid to surface critical
behaviour in non-equilibrium systems, it is clear that, as in the bulk case, similar scaling ideas
and principles should apply [3].

Directed bond percolation (DP) [4, 5] can be thought of as a purely geometric model in
which bonds placed on the edges of a lattice are either present with probabilityp or absent with
probabilityq = 1− p. Connections are only allowed along a preferred direction given by an
orientation of the edges. The behaviour of the model is controlled by the branching probability
(or density of bonds)p. Whenp is smaller than a critical valuepc all clusters of connected
bonds remain finite. Abovepc there is a non-zero probability of finding an infinite cluster,
and the average cluster sizeS(p) diverges asp → pc. In most interpretations the preferred
direction is time, and one realization is as a model of an epidemic without immunization.
More precisely, the directed square lattice has sites which are the points in thet–x plane with
integer coordinates such thatt > 0 andt + x is even. There are two edges leading from the
site (t, x) which terminate at the sites(t + 1, x ± 1). A wall will be said to be present if the
bonds leading to sites withx < 0 are always absent. In a recent paper [6] this model was
studied using series expansions. The analysis of the series, which were calculated to order 67,
raised the very interesting possibility that the mean cluster length with the initial seed close
to the wall has a critical exponentτ1 = 1. Here, the subscript 1 is used to indicate that the
value of the exponent is in the presence of a wall. The value ofτ1 has also been obtained from
Monte Carlo simulations [7] and the estimateτ1 = 1.000(5) is consistent with the conjecture

0305-4470/99/336055+08$30.00 © 1999 IOP Publishing Ltd 6055



6056 I Jensen

τ1 = 1. If true this would be quite remarkable since no other (non-trivial) exponents for the
DP problem appear to be given by integers or even (simple) rational fractions [8,9].

In an effort to further investigate this problem I have used a recently devised and very
efficient algorithm [10] to greatly extend the low-density series for moments of the pair-
connectedness. The series have been derived to order 173, thus more than doubling the
number of terms obtained previously. In the following I shall very briefly describe how the
series are calculated. The actual algorithm is a simple specialization of the one used for the
bulk problem, and details can be found in [10]. The results of the analysis of the series are
presented in section 3.

2. Series expansions

In the low-density phase (p < pc) many quantities of interest can be derived from the pair-
connectednessCx,t (p), which is the probability that the sitex is occupied at timet given
that the origin was occupied att = 0. The moments of the pair-connectedness diverge asp

approaches the critical point from below:

µn,m(p) =
∞∑
t=0

∑
x

xntmCx,t (p) ∝ (pc − p)−(γ1+nν⊥,1+mν‖,1) p→ p−c . (1)

In particular the average cluster sizeS(p) = µ0,0(p) ∝ (pc − p)−γ . Any directed path to a
site whose parallel distance from the origin ist contains at leastt bonds. From this it follows
that ifCx,t has been calculated fort 6 tmax then one can determine the moments to ordertmax.
The pair-connectedness can be calculated via a transfer-matrix-type algorithm by moving a
boundary line through the lattice one row at a time with each row built up one site at a time.
The sum over all contributing graphs is calculated as the boundary line is moved through the
lattice. At any given stage the boundary line cuts through a number of, say,k sites where each
sitej is in a stateσj = 1 if there is a bond entering the site from the row above, andσj = 0
otherwise. Configurations along the boundary line can thus be represented as binary numbers,
and the contribution from each configuration is given by a truncated polynomial inp. Let
Sa,b = (σ1, . . . , σj−1, a, b, σj+2, . . . , σk) be the configuration of sites along the boundary with
σj = a andσj+1 = b. As the boundary is moved at positionj , the boundary polynomials,BP
are updated as follows [10]:

BP(S1,1) = p2BP(S1,0) + (p − p2)BP (S1,1)

BP (S0,1) = pBP(S1,0)− pBP(S1,1) +BP(S0,1)

BP (S1,0) = pBP(S1,0)

BP (S0,0) = BP(S0,0).

In a calculation to a given orderN we need to calculate the contributions for allt 6 N . For
a givent ′ < t the possible configurations along the boundary line are limited by constraints
arising from the facts that graphs have to terminate at levelt and have no dangling parts.
The ‘no dangling parts’ restraint is equivalent to demanding that sites with incoming bonds
also have outgoing bonds. Therefore, a configuration for which the maximal separation
between sites with incoming bonds isr will take at least anotherr steps before collapsing
to a configuration with a single incoming bond. Consequently ift ′ + r > t , that configuration
makes no contribution toC(x, t) for anyx, and so can be discarded. Furthermore if the minimal
order to which a configuration contributes,Ncont > N , the configuration can be discarded since
it will only contribute at an order exceeding that to which we want to carry out our calculation.
In order to calculateNcont, observe that a configuration can be constructed and deconstructed
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in this manner. First taket ′ − r steps, start branching forr steps until the given configuration
is produced, then start coalescing branches for anotherr steps, and then take the remaining
t − t ′ − r steps. It is easy to calculate the minimum order,Nmin, of the boundary polynomial
as the configuration is built up, and from the arguments given above it follows that

Ncont= 2Nmin + t − 2t ′. (2)

Further memory savings are obtained by observing that in calculatingC(x, t)we know that the
graphs have at leastt bonds so we need only storeN− t coefficients, and when the boundary is
moved from one row to the next we discard the lowest-order term in each boundary polynomial.

3. Analysis of the series

The series for moments of the pair-connectedness were analysed using differential
approximants (DAs). A comprehensive review of these and other techniques for series analysis
may be found in [11]. This allows one to locate the critical point and estimate the associated
critical exponents fairly accurately, even in cases where there are additional non-physical
singularities. Here it suffices to say that aKth-order DA to a functionf , for which one has
derived a series expansion, is formed by matching the coefficients in the polynomialsQi andP
of orderNi andL, respectively, so that the solution to the inhomogeneous differential equation

K∑
i=0

Qi(x)

(
x

d

dx

)i
f̃ (x) = P(x) (3)

agrees with the first series coefficients off . The equations are readily solved as long as the
total number of unknown coefficients in the polynomials is smaller than the order of the series
N . The possible singularities of the series appear as the zerosxi of the polynomialQK and
the associated critical exponentλi is estimated from the indicial equation

λi = K − 1− QK−1(xi)

xiQ
′
K(xi)

.

The physical critical point is generally the first singularity on the positive real axis.

3.1. The critical point and exponents

In this section I will give a detailed account of the results of the analysis of the seriesS(p),
µ1,0(p),µ2,0(p),µ0,1(p), andµ0,2(p). For fixedK and a fixed order,L, of the inhomogeneous
polynomial, estimates of the critical point and exponents were obtained by averaging over DAs
using at least 150 terms, with the further constraint that the order of the polynomials,Qj , differ
by at most 1. In table 1 I havelisted the estimates obtained from second- and third-order DAs for
a few values ofL. The numbers in parenthesis are error-estimates reflecting the spread among
the various approximants. It should be emphasized that these errors are at best indicative of the
‘true’ error since they do not reflect more systematic errors such as a possible systematic drift
in the estimates as the order of the polynomials used to form the approximants is increased. In
short, the quoted errors will tend to be too small and give a false sense of how well-converged
the estimates really are.

Apart from a few second-order cases with lowL-values the estimates are consistent with
pc = 0.644 700 175(35). This is in excellent agreement with the more accurate estimate
pc = 0.644 700 185(5) obtained from the bulk series [10], and confirms without reasonable
doubt the observation made in [6] that the introduction of the wall does not change the value of
the critical point. It is worth noting that the estimates from the seriesµ0,2(p) are exceptionally
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Table 1. Estimates of the location of the critical point and exponents obtained from second- and
third-order DAs.

Second-order DAs Third-order DAs

L pc γ1 pc γ1

0 0.644 700 235(11) 1.820 594(27) 0.644 700 203 4(41) 1.820 541 9(69)
10 0.644 700 232(10) 1.820 582(32) 0.644 700 203 6(24) 1.820 542 5(41)
20 0.644 700 209 3(67) 1.820 551 7(98) 0.644 700 201 2(15) 1.820 538 1(26)
30 0.644 700 209 4(48) 1.820 550 9(68) 0.644 700 202 1(29) 1.820 539 6(50)
40 0.644 700 207 2(20) 1.820 548 6(35) 0.644 700 203 7(27) 1.820 542 6(49)
50 0.644 700 207 1(16) 1.820 549 1(29) 0.644 700 205 7(20) 1.820 546 1(37)

L pc γ1 + ν‖,1 pc γ1 + ν‖,1

0 0.644 700 205 8(13) 3.554 408(22) 0.644 700 196 7(10) 3.554 381 6(24)
10 0.644 700 205 1(22) 3.554 399(13) 0.644 700 196 19(94) 3.554 380 5(21)
20 0.644 700 200 2(33) 3.554 390 3(76) 0.644 700 197 1(17) 3.554 382 6(38)
30 0.644 700 201 4(55) 3.554 392(16) 0.644 700 197 1(19) 3.554 382 7(35)
40 0.644 700 203 1(14) 3.554 398(11) 0.644 700 196 70(80) 3.554 381 5(15)
50 0.644 700 204 7(58) 3.554 403(20) 0.644 700 196 1(29) 3.554 380 9(61)

L pc γ1 + 2ν‖,1 pc γ1 + 2ν‖,1

0 0.644 700 187 44(16) 5.288 203 82(35) 0.644 700 187 40(20) 5.288 203 76(35)
10 0.644 700 187 42(10) 5.288 203 74(23) 0.644 700 187 28(15) 5.288 203 56(26)
20 0.644 700 187 19(40) 5.288 203 32(70) 0.644 700 187 44(46) 5.288 203 89(87)
30 0.644 700 187 61(46) 5.288 204 17(93) 0.644 700 187 52(22) 5.288 204 00(41)
40 0.644 700 187 82(22) 5.288 204 61(41) 0.644 700 187 7(10) 5.288 204 5(23)
50 0.644 700 187 44(61) 5.288 203 9(11) 0.644 700 186 7(20) 5.288 203 2(30)

L pc γ1 + ν⊥,1 pc γ1 + ν⊥,1

0 0.644 700 139 8(82) 2.917 206(13) 0.644 700 161(13) 2.917 255(35)
10 0.644 700 139 7(48) 2.917 212(28) 0.644 700 162 8(68) 2.917 257(21)
20 0.644 700 149 8(67) 2.917 206(10) 0.644 700 167 5(18) 2.917 264 0(40)
30 0.644 700 151 3(47) 2.917 227 4(76) 0.644 700 176(11) 2.917 286(29)
40 0.644 700 147 9(27) 2.917 221(19) 0.644 700 170 1(32) 2.917 270 0(76)
50 0.644 700 147 8(51) 2.917 229(13) 0.644 700 173 5(88) 2.917 277(21)

L pc γ1 + 2ν⊥,1 pc γ1 + 2ν⊥,1

0 0.644 700 140(10) 4.014 024(20) 0.644 700 157 7(35) 4.014 066(10)
10 0.644 700 140 8(75) 4.014 025(16) 0.644 700 157 5(46) 4.014 060(44)
20 0.644 700 142(11) 4.014 028(21) 0.644 700 161 3(23) 4.014 076 3(75)
30 0.644 700 126(12) 4.014 04(11) 0.644 700 163 6(25) 4.014 081 3(69)
40 0.644 700 140(11) 4.014 025(53) 0.644 700 171 0(68) 4.014 101(20)
50 0.644 700 135 5(65) 4.013 985(41) 0.644 700 149(10) 4.014 049(24)

close to the bulk estimate. Note also that there is a small but systematic change in thepc
estimates from the remaining series as one goes from second- to third-order approximants,
with the latter being closer to the bulk estimate. From this table one can obtain the following
estimates for the critical exponents:

γ1 = 1.820 544(15)

γ1 + ν‖,1 = 3.554 385(25)
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γ1 + 2ν‖,1 = 5.288 204(4)

γ1 + ν⊥,1 = 2.917 25(4)

γ1 + 2ν⊥,1 = 4.014 06(5).

Note that since these estimates take into account the differences between the second- and
third-order approximants, and the variation withL, the errors are likely to be conservative.
In particular they are typically an order of magnitude larger than the ‘errors’ on any specific
estimate in table 1. From the exponent estimates we find thatν‖,1 = 1.733 820(12) and
ν⊥,1 = 1.0968(1). The corresponding estimates for the bulk problem areν‖ = 1.733 847(6)
andν⊥ = 1.096 854(4), which confirms thatν‖,1 = ν‖ andν⊥,1 = ν⊥ as postulated in [6]. It
is evident from table 1 that the seriesµ1,0(p) andµ2,0(p) appear to be the worst converged. I
therefore also analysed the seriesµ2,0(p)/µ1,0(p) ∝ (pc − p)−ν⊥ and found this to yield the
much more accurate estimatespc = 0.644 700 185(8) andν⊥ = 1.096 85(1), which do not
require further comment.

Due to the high degree of internal consistency of the estimates from the bulk series one
would tend to believe quite firmly in their accuracy and correctness and one can then use them
to try and obtain more accurate estimates for the exponents for the problem with a wall. In
figure 1 I have plotted the estimates for the critical exponents versus the estimates forpc.
By extrapolating thepc estimates until they lie in the interval given by the bulk estimate
pc = 0.644 700 185(5), one obtains the following ‘biased’ estimates for the exponents for the
wall problem

γ1 = 1.820 51(1)

γ1 + ν‖,1 = 3.554 36(1)

γ1 + 2ν‖,1 = 5.288 202(6)

γ1 + ν⊥,1 = 2.917 305(15)

γ1 + 2ν⊥,1 = 4.014 14(1).

(4)

These estimates have a very high degree of consistency and I therefore takeγ1 = 1.820 51(1)
as the final estimate. Again, the errors are likely to be conservative since they reflect the
variation of the exponents over the entire interval of the bulk estimate ofpc.

In order to check the validity of the conjectureτ1 = 1 one has to rely on scaling relations
to expressτ1 in terms ofγ1 and the bulk exponentsγ , ν‖ andν⊥. First we note that [6]

τ1 = ν‖ − β1 (5)

whereβ1 is the exponent characterizing the decay of the percolation probability. Next we use
a hyper-scaling relation derived for the case with the seed close to the wall [12]

ν‖ + dν⊥ = β + β1 + γ1 (6)

whered + 1 is the dimension of the lattice. This is a simple generalization of the usual bulk
hyper-scaling relation

ν‖ + dν⊥ = 2β + γ. (7)

By combining all of these relations one finds

τ1 = γ1− (γ + dν⊥ − ν‖)/2. (8)

In [10] it was estimated thatγ = 2.277 730(5) and by inserting the previously stated estimates
for the remaining exponents one gets the estimateτ1 = 1.000 14(2). So this would clearly
rule out the possibility thatτ1 = 1, though it is tantalizingly close.
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Figure 1. Estimates of the critical exponents obtained from third-order differential approximants
versus estimates of the critical point. Numbers along thex-axis are all preceded by 0.644 700.
Shown are (from left to right and top to bottom) estimates from the seriesS(p), µ0,1(p), µ1,0(p),
µ0,2(p), andµ2,0(p).

3.2. Non-physical singularities

The series have a radius of convergence smaller thanpc due to singularities in the complex
p-plane closer to the origin than the physical critical point. Since all the coefficients in
the expansion are real, complex singularities always come in conjugate pairs. The analysis
indicates that the series have quite a large number of non-physical singularities, namely a
singularity on the negative real axis and three conjugate pairs in the complex plane. The
singularity on the negative real axis atp− = −0.516 66(1) and two of the conjugate pairs at
p1 = 0.010 05(10) ± 0.474 95(15)i andp2 = −0.2255(10) ± 0.4395(10)i are also present
in the bulk series, while the third conjugate pair atp3 = 0.225(5) ± 0.420(5)i is unique to
the wall problem. At the singularityp− the exponent estimates are 0.533(3), −0.463(4),
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−1.443(3), 0.23(5), and−0.10(3), obtained from the series forS, µ0,1, µ0,2, µ1,0, andµ2,0,
respectively. The corresponding exponent estimates at the conjugate pair of singularitiesp1

are 4.0(1), 2.98(5), 2.00(5), 4.0(3), and 4.0(5). No meaningful estimates could be obtained
for the exponents atp2 andp3.

4. Conclusion

In this paper I have reported on the derivation and analysis of low-density series for moments
of the pair-connectedness on the directed square lattice with the origin close to an impenetrable
wall. The series for bond percolation was extended to order 173 as compared with order 67
obtained in previous work [6]. Analysis of the series led to very accurate estimates for the
critical parameters and clearly showed that the critical pointpc and the exponentsν‖ andν⊥
have the same values as in the bulk. However, the exponent for the average cluster size differs
from the bulk case and has the valueγ1 = 1.820 51(1).

Using the scaling relations an estimate,τ1 = 1.000 14(2), was obtained for the exponent
characterizing the average cluster length. This rules out the possibility thatτ1 = 1. This
conclusion, however, hinges crucially on having accurate estimates for four exponents and
they would not require much altering to get an estimate consistent withτ1 = 1. On the other
hand, so far no one has been able to give theoretical arguments to supportτ1 = 1. Since
other exponents for this problem appear not even to be given by (simple) rational fractions, the
weight of evidence would at present clearly not favour the conjectureτ1 = 1. A more direct
confirmation of this, say from an extended series for the average cluster length, would clearly
be desirable.

E-mail or WWW retrieval of series

The series can be obtained via e-mail by sending a request to I.Jensen@ms.unimelb.edu.au or
via the world wide web on the URL http://www.ms.unimelb.edu.au/∼iwan/ by following the
instructions.
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