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Abstract. A new algorithm for the derivation of low-density expansions has been used to greatly
extend the series for moments of the pair-connectedness on the directed square lattice near an
impenetrable wall. Analysis of the series yields very accurate estimates for the critical point and
exponents. In particular, the estimate for the exponent characterizing the average cluster length
near the wallz; = 1.000 142), appears to exclude the conjectuie= 1. The critical point and

the exponents; andv; have the same values as for the bulk problem.

1. Introduction

Surface critical behaviour in equilibrium systems has received a lot of attention in recent
years [1,2]. Close to a surface, thermodynamic quantities have critical exponents which
may depend on the specific boundary conditions and differ from the exponents characterizing
the behaviour in the bulk. While relatively little attention has been paid to surface critical
behaviour in non-equilibrium systems, it is clear that, as in the bulk case, similar scaling ideas
and principles should apply [3].

Directed bond percolation (DP) [4, 5] can be thought of as a purely geometric model in
which bonds placed on the edges of a lattice are either present with probaluitigbsent with
probabilityg = 1 — p. Connections are only allowed along a preferred direction given by an
orientation of the edges. The behaviour of the model is controlled by the branching probability
(or density of bondsp. Whenp is smaller than a critical valug, all clusters of connected
bonds remain finite. Above,. there is a non-zero probability of finding an infinite cluster,
and the average cluster sig€p) diverges ap — p.. In most interpretations the preferred
direction is time, and one realization is as a model of an epidemic without immunization.
More precisely, the directed square lattice has sites which are the pointsithine with
integer coordinates such that> 0 andr + x is even. There are two edges leading from the
site (¢, x) which terminate at the sitgs + 1, x + 1). A wall will be said to be present if the
bonds leading to sites with < O are always absent. In a recent paper [6] this model was
studied using series expansions. The analysis of the series, which were calculated to order 67,
raised the very interesting possibility that the mean cluster length with the initial seed close
to the wall has a critical exponemnt = 1. Here, the subscript 1 is used to indicate that the
value of the exponent is in the presence of a wall. The valug lods also been obtained from
Monte Carlo simulations [7] and the estimate= 1.000(5) is consistent with the conjecture
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71 = 1. If true this would be quite remarkable since no other (non-trivial) exponents for the
DP problem appear to be given by integers or even (simple) rational fractions [8, 9].

In an effort to further investigate this problem | have used a recently devised and very
efficient algorithm [10] to greatly extend the low-density series for moments of the pair-
connectedness. The series have been derived to order 173, thus more than doubling the
number of terms obtained previously. In the following | shall very briefly describe how the
series are calculated. The actual algorithm is a simple specialization of the one used for the
bulk problem, and details can be found in [10]. The results of the analysis of the series are
presented in section 3.

2. Series expansions

In the low-density phasep(< p.) many quantities of interest can be derived from the pair-
connectednes§, ,(p), which is the probability that the site is occupied at time given
that the origin was occupied at= 0. The moments of the pair-connectedness diverge as
approaches the critical point from below:

am(P) =Y Y x"t"Cri(p) o (pe — p)” LD p s o (1)
t=0 x

In particular the average cluster si£ép) = poo(p) x (p. — p)~7. Any directed path to a

site whose parallel distance from the origin isontains at leastbonds. From this it follows

that if C, , has been calculated for< fmax then one can determine the moments to orgge

The pair-connectedness can be calculated via a transfer-matrix-type algorithm by moving a

boundary line through the lattice one row at a time with each row built up one site at a time.

The sum over all contributing graphs is calculated as the boundary line is moved through the

lattice. At any given stage the boundary line cuts through a number ok ségs where each

site j is in a stater; = 1 if there is a bond entering the site from the row above,@ng: 0

otherwise. Configurations along the boundary line can thus be represented as binary numbers,

and the contribution from each configuration is given by a truncated polynomjal ibet

Sap = (01,...,0j_1,a,b,0j42, ..., 0r) be the configuration of sites along the boundary with

o; = aando;+1 = b. As the boundary is moved at positignthe boundary polynomial® P

are updated as follows [10]:

BP(S11) = p’BP(S10) + (p — pP) BP(S11)
BP(So.1) = pBP(S10) — pBP(S11) + BP(S0,1)
BP(S1,0) = pBP(S10)

BP(So0,0) = BP(S0,0)-

In a calculation to a given ordéf we need to calculate the contributions forralf N. For
a givent’ < t the possible configurations along the boundary line are limited by constraints
arising from the facts that graphs have to terminate at leaid have no dangling parts.
The ‘no dangling parts’ restraint is equivalent to demanding that sites with incoming bonds
also have outgoing bonds. Therefore, a configuration for which the maximal separation
between sites with incoming bondsrawill take at least another steps before collapsing
to a configuration with a single incoming bond. Consequently+ifr > ¢, that configuration
makes no contribution 6 (x, ¢) for anyx, and so can be discarded. Furthermore ifthe minimal
order to which a configuration contribut@é,ont > N, the configuration can be discarded since
it will only contribute at an order exceeding that to which we want to carry out our calculation.
In order to calculat&Von, Observe that a configuration can be constructed and deconstructed
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in this manner. First take — r steps, start branching fersteps until the given configuration
is produced, then start coalescing branches for aneteps, and then take the remaining
t —t’ — r steps. Itis easy to calculate the minimum ord&f;,, of the boundary polynomial
as the configuration is built up, and from the arguments given above it follows that

Necont = 2Nmin +1— 21 (2)

Further memory savings are obtained by observing that in calcul@ting ) we know that the
graphs have at leasbonds so we need only stake— ¢ coefficients, and when the boundary is
moved from one row to the next we discard the lowest-order term in each boundary polynomial.

3. Analysis of the series

The series for moments of the pair-connectedness were analysed using differential
approximants (DAs). A comprehensive review of these and other techniques for series analysis
may be found in [11]. This allows one to locate the critical point and estimate the associated
critical exponents fairly accurately, even in cases where there are additional non-physical
singularities. Here it suffices to say thakdh-order DA to a functionf, for which one has
derived a series expansion, is formed by matching the coefficients in the polyn@méaais P

of orderN; andL, respectively, so that the solution to the inhomogeneous differential equation

K d i ~
D 0ix) (xa> f) =P €)
i=0

agrees with the first series coefficients faf The equations are readily solved as long as the
total number of unknown coefficients in the polynomials is smaller than the order of the series
N. The possible singularities of the series appear as the zeafghe polynomialQ ¢ and
the associated critical exponentis estimated from the indicial equation
=K1 QK—,l(xi)'
x; Ol (x;)
The physical critical point is generally the first singularity on the positive real axis.

3.1. The critical point and exponents

In this section | will give a detailed account of the results of the analysis of the s&pes
“1.0(p), n2.0(p), ro1(p), andug 2(p). ForfixedK and afixed ordet,, of the inhomogeneous
polynomial, estimates of the critical point and exponents were obtained by averaging over DAs
using at least 150 terms, with the further constraint that the order of the polynomijaldiffer
byatmost 1. Intald 1 | havdisted the estimates obtained from second- and third-order DAs for
afew values of.. The numbers in parenthesis are error-estimates reflecting the spread among
the various approximants. It should be emphasized that these errors are at best indicative of the
‘true’ error since they do not reflect more systematic errors such as a possible systematic drift
in the estimates as the order of the polynomials used to form the approximants is increased. In
short, the quoted errors will tend to be too small and give a false sense of how well-converged
the estimates really are.

Apart from a few second-order cases with Iéwalues the estimates are consistent with
p. = 0.64470017835). This is in excellent agreement with the more accurate estimate
pe. = 0.644 700 18%5) obtained from the bulk series [10], and confirms without reasonable
doubt the observation made in [6] that the introduction of the wall does not change the value of
the critical point. Itis worth noting that the estimates from the serigs p) are exceptionally
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Table 1. Estimates of the location of the critical point and exponents obtained from second- and
third-order DAs.

Second-order DAs Third-order DAs

L Pc Y1 Pc Y1

0  0.644700235(11) 1.820594(27) 0.6447002034(41)  1.8205419(69)
10 0.644700232(10) 1.820582(32) 0.6447002036(24)  1.8205425(41)
20 0.6447002093(67) 1.8205517(98)  0.6447002012(15)  1.8205381(26)
30 0.6447002094(48)  1.8205509(68)  0.6447002021(29)  1.8205396(50)
40 0.6447002072(20)  1.8205486(35)  0.6447002037(27)  1.8205426(49)
50 0.6447002071(16) 1.8205491(29)  0.6447002057(20)  1.820546 1(37)
L pc Y1ty Pe yity

0 0.6447002058(13)  3.554408(22) 0.6447001967(10)  3.5543816(24)
10 0.6447002051(22) 3.554 399(13) 0.64470019619(94) 3.5543805(21)
20 0.6447002002(33)  3.5543003(76)  0.6447001971(17)  3.5543826(38)
30 0.6447002014(55)  3.554392(16) 0.6447001971(19)  3.5543827(35)
40 0.6447002031(14)  3.554398(11) 0.64470019670(80)  3.554 3815(15)
50 0.6447002047(58)  3.554403(20) 0.6447001961(29)  3.5543809(61)
L pe y1+2v)1 Pe y1+2v)1

0 0.64470018744(16) 5.28820382(35) 0.64470018740(20) 5.288203 76(35)
10 0.64470018742(10) 5.28820374(23) 0.64470018728(15) 5.28820356(26)
20 0.64470018719(40) 5.28820332(70) 0.644700187 44(46) 5.28820389(87)
30 0.64470018761(46) 5.28820417(93) 0.64470018752(22) 5.28820400(41)
40 0.64470018782(22) 5.28820461(41) 0.6447001877(10)  5.288204 5(23)
50 0.64470018744(61) 5.2882039(11)  0.6447001867(20)  5.2882032(30)
L pc yitvia De yitvia

0 0.6447001398(82)  2.917206(13) 0.644700161(13) 2.917 255(35)
10  0.6447001397(48)  2.917212(28) 0.6447001628(68)  2.917257(21)
20 0.6447001498(67)  2.917 206(10) 0.6447001675(18)  2.917 264 0(40)
30 0.6447001513(47)  2.9172274(76)  0.644700176(11) 2.917 286(29)
40  0.6447001479(27)  2.917221(19) 0.6447001701(32)  2.9172700(76)
50 0.6447001478(51)  2.917229(13) 0.6447001735(88)  2.917277(21)
L pe i+2v1 Pe yi+2v11

0  0.644700140(10) 4.014024(20) 0.6447001577(35)  4.014066(10)
10  0.6447001408(75)  4.014025(16) 0.6447001575(46)  4.014060(44)
20 0.644700142(11) 4.014028(21) 0.6447001613(23)  4.0140763(75)
30 0.644700126(12) 4.01404(11) 0.6447001636(25)  4.0140813(69)
40  0.644700140(11) 4.014 025(53) 0.6447001710(68)  4.014101(20)
50 0.6447001355(65)  4.013985(41) 0.644 700 149(10) 4.014049(24)

close to the bulk estimate. Note also that there is a small but systematic changepin the
estimates from the remaining series as one goes from second- to third-order approximants,
with the latter being closer to the bulk estimate. From this table one can obtain the following
estimates for the critical exponents:

» = 1.82054415)
1 +1).1 = 3.554 38525)
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yt+ 2\)“’1 = 5.2882044)
i+ = 2,917 254)
Y1t 2Vl,1 = 4.014085).

Note that since these estimates take into account the differences between the second- and
third-order approximants, and the variation with the errors are likely to be conservative.

In particular they are typically an order of magnitude larger than the ‘errors’ on any specific
estimate in table 1. From the exponent estimates we finduhat= 1.73382Q12) and

v; 1 = 1.09681). The corresponding estimates for the bulk problemgre: 1.733 8476)

andv; = 1.096 8544), which confirms thab; ; = vj andv, 1 = v, as postulated in [6]. It

is evident from table 1 that the seriggo(p) andu2,0(p) appear to be the worst converged. |
therefore also analysed the series(p)/r1.0(p) x (p. — p)~"+ and found this to yield the

much more accurate estimates = 0.644 700 1888) andv;, = 1.096 8%1), which do not

require further comment.

Due to the high degree of internal consistency of the estimates from the bulk series one
would tend to believe quite firmly in their accuracy and correctness and one can then use them
to try and obtain more accurate estimates for the exponents for the problem with a wall. In
figure 1 | have plotted the estimates for the critical exponents versus the estimages for
By extrapolating thep, estimates until they lie in the interval given by the bulk estimate
pe. = 0.644 700 18%5), one obtains the following ‘biased’ estimates for the exponents for the
wall problem

y; = 1.820511)

ity = 3.554341)

yt+ 2\)“’1 = 5.2882026) (4)

y1+v, 1 = 291730515

y1+2v, 1 =4.014141).
These estimates have a very high degree of consistency and | therefoye talkie82051(1)
as the final estimate. Again, the errors are likely to be conservative since they reflect the
variation of the exponents over the entire interval of the bulk estimage.of

In order to check the validity of the conjecture= 1 one has to rely on scaling relations

to expresg; in terms ofy; and the bulk exponents, v, andv, . First we note that [6]

=V - (5)
wherep; is the exponent characterizing the decay of the percolation probability. Next we use
a hyper-scaling relation derived for the case with the seed close to the wall [12]

vptdv, =B+ Bty (6)
whered + 1 is the dimension of the lattice. This is a simple generalization of the usual bulk
hyper-scaling relation

V||+dUL=2ﬂ+)/. (7)
By combining all of these relations one finds

n=y1—(y +dvi —v))/2 (8)

In [10] it was estimated that = 2.277 73@5) and by inserting the previously stated estimates
for the remaining exponents one gets the estimate: 1.000142). So this would clearly
rule out the possibility that; = 1, though it is tantalizingly close.
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Figure 1. Estimates of the critical exponents obtained from third-order differential approximants
versus estimates of the critical point. Numbers alongati&xis are all preceded by 0.644 700.
Shown are (from left to right and top to bottom) estimates from the s&ties 10,1(p). it1.0(p),
#o,2(p), andpu2,0(p).

3.2. Non-physical singularities

The series have a radius of convergence smaller thatue to singularities in the complex
p-plane closer to the origin than the physical critical point. Since all the coefficients in
the expansion are real, complex singularities always come in conjugate pairs. The analysis
indicates that the series have quite a large number of non-physical singularities, namely a
singularity on the negative real axis and three conjugate pairs in the complex plane. The
singularity on the negative real axisat = —0.516 661) and two of the conjugate pairs at

p1 = 0.0100510) + 0.474 9515)i and p, = —0.225510) + 0.439510)i are also present

in the bulk series, while the third conjugate pairpgt= 0.2255) + 0.420(5)i is unique to

the wall problem. At the singularity_ the exponent estimates areb83(3), —0.463(4),
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—1.443(3), 0.23(5), and—0.10(3), obtained from the series fo, 0.1, 0.2, 41,0, @NA 120,
respectively. The corresponding exponent estimates at the conjugate pair of singyarities
are 40(1), 2.98(5), 2.00(5), 4.0(3), and 40(5). No meaningful estimates could be obtained
for the exponents g, and ps.

4. Conclusion

In this paper | have reported on the derivation and analysis of low-density series for moments
of the pair-connectedness on the directed square lattice with the origin close to an impenetrable
wall. The series for bond percolation was extended to order 173 as compared with order 67
obtained in previous work [6]. Analysis of the series led to very accurate estimates for the
critical parameters and clearly showed that the critical ppirdnd the exponents; andv,

have the same values as in the bulk. However, the exponent for the average cluster size differs
from the bulk case and has the vajye= 1.82051(1).

Using the scaling relations an estimate~= 1.000 142), was obtained for the exponent
characterizing the average cluster length. This rules out the possibilityithat1l. This
conclusion, however, hinges crucially on having accurate estimates for four exponents and
they would not require much altering to get an estimate consistentryithl. On the other
hand, so far no one has been able to give theoretical arguments to supperl. Since
other exponents for this problem appear not even to be given by (simple) rational fractions, the
weight of evidence would at present clearly not favour the conjeatuse 1. A more direct
confirmation of this, say from an extended series for the average cluster length, would clearly
be desirable.

E-mail or WWW retrieval of series

The series can be obtained via e-mail by sending a request to l.Jensen@ms.unimelb.edu.au or
via the world wide web on the URL http://www.ms.unimelb.edu-dwan/ by following the
instructions.
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